今天是星期
020-87748917 / 87226359 hwnano@xuzhounano.com / xuzhounano_sun@126.com

Contact us immediately

联系我们
在线客服

回到顶部

理想的负极材料需要具备的7个条件

来源:广州宏武材料科技有限公司     发布时间:2019-01-11浏览量:

      较为理想的负极材料最少要具备以下7点条件:化学电位较低,与正极材料形成较大的电势差,从而得到高功率电池;应具备较高的循环比容量;在负极材料中Li+应该容易嵌入和脱出,具有较高的库伦效率,以至于在Li+脱嵌过程中可以有较稳定的充放电电压;有良好的电子电导率和离子电导率;有良好的稳定性,对电解质有一定的兼容性;对于材料的来源应该资源丰富,价格低廉,制造工艺简单;安全、绿色无污染。
 
      符合以上各个条件的负极材料目前基本不存在,因此研究能量密度高,安全性能好,价格便宜,材料易得的新型负极材料成为当务之急,这也是现阶段锂电池研究领域的热门课题。现阶段,锂离子电池负极材料主要有碳材料、过渡金属的氧化物、合金材料、硅材料及其他含硅材料,含锂的过渡金属的氮化物以及钛酸锂材料。

1.  碳材料
      包括石墨,石墨烯,碳纳米管,等等。

      碳纳米管(CNT)是一种具有较完整石墨化结构的特殊碳材料,其自身具有优良的导电性能和高的导热系数。因其结构特殊,导致负极在脱嵌锂时深度小、行程短、速度快,并且在大倍率大电流充放电时极化作用较小,可对提高锂电池电池的大倍率快速充放电性能很有帮助。然而,碳纳米管单独直接用作锂离子电池负极材料时,会存在锂电池不可逆容量高、首次充放电库伦效率低、充放电平台不明显及电压滞后严重等突出问题。将碳纳米管直接做负极材料,有数据表明其首次放电容量1 500~1 700mAh/g,但是可逆容量仅为400mAh/g,随着锂电池进一步进行充放电循环,可逆容量更低,衰减速度更快。这就导致了其在锂电池中的进一步应用。

      但是CNT可与石墨类负极、硅基复合负极、钛酸锂、锡基等种类的材料进行复合,充分利用其独特的中空结构、导电性能好、大比表面积等优点,用其作为载体或添加剂改善原体系负极材料的电化学性能。有实验结果表明CNT不仅可以缓冲复合负极材料在嵌脱锂时发生的体积变化,而且形成的三维导电网络还可提高复合负极材料的倍率性能和循环寿命。

2. 石墨烯
 
  石墨烯做为最前沿的碳材料,具有非常优异的电化学性能。有可以直接作为锂电池负极材料的可能。有实验结论表明用天然石墨做原料,经过化学反应剥离,再采用水合肼还原剂还原制备出具有丛林结构形貌的三维石墨烯片,其兼具硬碳和软碳负极的部分优良特性,并且在高于0.52V电压区间上,表现出优异的电容器电化学特性。

3. 硅负极
      硅负极因具有3590mAh/g的超高比容量,被认为是下一代锂离子电池负极的理想选择。硅负极材料大幅度提高锂离子电池的能量密度,这正是便携式电子产品、无人机、新能源汽车和储能电池系统等一系列新技术领域发展的迫切需要。然而其低的循环寿命严重阻碍了其商业化应用。硅负极低的循环寿命源于其在充放电过程中存在巨大体积膨胀。但硅负极的体积膨胀效应导致纳米硅颗粒与电极极片的机械稳定性变差、活性颗粒之间相互的接触不好、以及表面SEI钝化膜的稳定性降低,导致锂电池的寿命和安全性能都面临这挑战。

4. 硅碳负极
   硅碳复合负极材料目前采用基本是核壳结构,通过以球形石墨或者人造石墨为基底,在石墨表面复合或者包覆一层Si纳米颗粒,然后再在其外表包覆一层无定形碳、碳纳米管或石墨烯。碳包覆的原理和本质在于:Si负极的体积膨胀由石墨和包覆层共同承担,从而避免或减少了硅负极材料在嵌脱锂过程因巨大的体积变化和应力而发生粉化。碳包覆的作用是:约束和缓冲活性中心的体积膨胀;阻止纳米活性粒子的团聚;阻止电解液向中心渗透,保持稳定的界面和SEI。
 
  碳负极材料具有良好的循环稳定性能和优异的导电性,且锂离子对其层间距并无明显影响,在一定程度上可以缓冲和适应硅的体积膨胀,因此常被用来与硅进行复合。

5. 锡基负极材料
      锡是锂电负极材料中研究比较早的负极材料之一,也是热点领域。锡基负极材料具有高比容量,被业界认为是很有潜力可以替代传统石墨负极的材料。但是其缺点同样明显:充放电过程中严重的体积膨胀、电极粉化和颗粒之间团聚,从而导致锂离子电池容量迅速衰减和低的电导率。发展和寻找有效的锡负极及复合材料制备方法,提高复合负极电极材料的导电性是提高锡负极电化学性能的关键,也是其大规模应用的前提。
 
6. 锡氧化物负极材料
      SnO2负极材料因具有较高的比容量(1494 mAh/g)而备受学术和产业界关注,也是负极领域研究的热点,很多公司都有涉及。然而,其在充放电循环过程中也面临着和锡负极同样一些问题:不可逆容量巨大、库伦效率偏低、同时在充电嵌锂过程中会存在较大的体积膨胀情况,体积膨胀比例可达250%~300%,循环过程中容易发生粒子团聚等,严重制约了其市场应用。
 
      有研究表明,通过制备碳基SnO2复合负极材料,可以有效抑制负极SnO2颗粒的团聚,同时还能缓解嵌锂时发生的严重体积膨胀效应,提高负极SnO2在充放电循环过程中的稳定性。有实验结果表明,用石墨碳材料作为载体,不仅能将SnO2颗粒分散得十分均匀,还能有效抑制SnO2间颗粒的团聚,提高负极材料的循环稳定性和次数,因此以SnO2为基础的复合负极材料将是锡氧化物未来发展的方向。

      如何利用各种材料的优势,开发高性能、低成本、安全型兼备的负极材料是我们材料人共同努力的方向。


阅读链接:

纳米锡-硅复合负极材料,显著提高锂离子电池性能

纳米石墨烯在锂离子电池负极材料中的应用

碳纳米管在锂离子电池负极材料中的应用

紫色氧化钨做负极材料可用于高输出用途领域

锗纳米粒子---高功率电池负极材料


下一篇:没有了

分享到: